Asymmetric Clathrin-Mediated Endocytosis Drives Repulsive Growth Cone Guidance
نویسندگان
چکیده
Asymmetric Ca(2+) elevations across the axonal growth cone mediate its turning responses to attractive and repulsive guidance cues. Here we show that clathrin-mediated endocytosis acts downstream of Ca(2+) signals as driving machinery for growth cone turning. In dorsal root ganglion neurons, the formation of clathrin-coated pits is facilitated asymmetrically across the growth cone by a directionally applied chemorepellent, semaphorin 3A, or by Ca(2+) signals that mediate repulsive guidance. In contrast, coated pit formation remains symmetric in the presence of attractive Ca(2+) signals. Inhibition of clathrin-mediated endocytosis abolishes growth cone repulsion, but not attraction, induced by Ca(2+) or extracellular physiological cues. Furthermore, asymmetric perturbation of the balance of endocytosis and exocytosis in the growth cone is sufficient to initiate its turning toward the side with less endocytosis or more exocytosis. With our previous finding that growth cone attraction involves asymmetric exocytosis, we propose that the balance between membrane addition and removal dictates bidirectional axon guidance.
منابع مشابه
Steering neuronal growth cones by shifting the imbalance between exocytosis and endocytosis.
Extracellular molecular cues guide migrating growth cones along specific routes during development of axon tracts. Such processes rely on asymmetric elevation of cytosolic Ca(2+) concentrations across the growth cone that mediates its attractive or repulsive turning toward or away from the side with Ca(2+) elevation, respectively. Downstream of these Ca(2+) signals, localized activation of memb...
متن کاملCa2+ induces macropinocytosis via F-actin depolymerization during growth cone collapse.
Growth cone collapse occurs in repulsive axon guidance and is accompanied by a reduction in the surface area of the plasma membrane of growth cones. However, the mechanism of this reduction is unclear. Here, we show that during growth cone collapse, caffeine-induced Ca(2+) release from ryanodine-sensitive Ca(2+) stores triggers the formation of large vacuoles in growth cones by macropinocytosis...
متن کاملNegative guidance factor-induced macropinocytosis in the growth cone plays a critical role in repulsive axon turning.
Macropinocytosis is a type of poorly characterized fluid-phase endocytosis that results in formation of relatively large vesicles. We report that Sonic hedgehog (Shh) protein induces macropinocytosis in the axons through activation of a noncanonical signaling pathway, including Rho GTPase and nonmuscle myosin II. Macropinocytosis induced by Shh is independent of clathrin-mediated endocytosis bu...
متن کاملSyntaxin 1B suppresses macropinocytosis and semaphorin 3A-induced growth cone collapse.
Growth cone collapse is a crucial process for repulsive axon guidance and is accompanied by a reduction in growth cone surface area. This process of reduction may be regulated by endocytosis; however, its molecular mechanism is unclear. Macropinocytosis is a clathrin-independent form of endocytosis in which large areas of plasma membrane can be engulfed. We have reported previously that macropi...
متن کاملSlit-Dependent Endocytic Trafficking of the Robo Receptor Is Required for Son of Sevenless Recruitment and Midline Axon Repulsion
Understanding how axon guidance receptors are activated by their extracellular ligands to regulate growth cone motility is critical to learning how proper wiring is established during development. Roundabout (Robo) is one such guidance receptor that mediates repulsion from its ligand Slit in both invertebrates and vertebrates. Here we show that endocytic trafficking of the Robo receptor in resp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 66 شماره
صفحات -
تاریخ انتشار 2010